Macrophage-mediated degradation of crosslinked collagen scaffolds.

نویسندگان

  • A Yahyouche
  • X Zhidao
  • J T Czernuszka
  • A J P Clover
چکیده

Biological scaffolds used in tissue engineering are incorporated in vivo by a process of cellular in-growth, followed by host-mediated degradation and replacement of these scaffolds, in which phagocytic cells from the monocyte/macrophage cell lineage play a key role. The chemical degradation of scaffolds with collagenases is well established, but to date this has not been correlated with an in vitro model of cell mediated scaffold degradation. RAW264.7, a murine monocyte/macrophage cell line, was cultured on collagen scaffolds crosslinked either by dehydrothermal treatment (DHT) or by carbodiimide (EDC). These cells attached to collagen scaffolds, proliferated and exhibited macrophage aggregation to form giant cells. Crosslinking the scaffolds by either DHT or EDC increased the resistance of the scaffold to degradation by macrophages. Increasing the amount of crosslinking in the scaffold made them more resistant to degradation by collagenase. However, while EDC increased the scaffolds' thermal and mechanical properties and decreased the swelling ratio, DHT increased the mechanical properties, but decreased the denaturation temperature and swelling ratio. Altering the scaffold properties by crosslinking affects the rate of degradation by macrophages, and this is correlated with chemical degradation (r=0.658, p<0.01). This will help in the design of scaffolds with task-specific profiles for use in tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds.

Biologic scaffolds composed of extracellular matrix (ECM) are widely used to facilitate remodeling and reconstruction of a variety of tissues in both preclinical animal studies and human clinical applications. The mechanisms by which such scaffolds influence the host tissue response are only partially understood, but it is logical that the mononuclear macrophage cell population plays a central ...

متن کامل

Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds.

Resorbable scaffolds for anterior cruciate ligament (ACL) reconstruction should provide temporary mechanical function then gradually breakdown while promoting matrix synthesis by local cells. Crosslinking influences collagen's mechanical properties, degradation rate, and interactions with cells. Our objective was to compare the effects of different crosslinkers on cellularity and mechanical pro...

متن کامل

Preparation and Cell Compatibility Evaluation of Chitosan/Collagen Composite Scaffolds Using Amino Acids as Crosslinking Bridges

In this study, a novel freeze-gelation method instead of the conventional freeze-drying method was used to fabricate porous chitosan/collagen-based composite scaffolds for skin-related tissue engineering applications. To improve the performance of chitosan/collagen composite scaffolds, we added 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and amino acids (including alanine, glycine, and...

متن کامل

Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability.

The low stiffness of reconstituted collagen hydrogels has limited their use as scaffolds for engineering implantable tissues. Although chemical crosslinking has been used to stiffen collagen and protect it against enzymatic degradation in vivo, it remains unclear how crosslinking alters the vascularization of collagen hydrogels. In this study, we examine how the crosslinking agents genipin and ...

متن کامل

Biocompatibility and degradation of tendon-derived scaffolds

Decellularized extracellular matrix has often been used as a biomaterial for tissue engineering applications. Its function, once implanted can be crucial to determining whether a tissue engineered construct will be successful, both in terms of how the material breaks down, and how the body reacts to the material's presence in the first place. Collagen is one of the primary components of extrace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2011